

V CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 14 a 17 de abril de 2009 - Belo Horizonte - Minas Gerais - Brasil

Técnica da Queima do Zinco ("Burn-zinc") no Processo de Soldagem a Ponto por Resistência

Vinicius Castanheira do Nascimento, nascimv1@airproducts.com¹ Américo Scotti, ascotti@ufu.br²

¹Air Products Brasil LTDA, Av. Francisco Matarazzo, 1400 – 11° andar. Ed. Milano – Água Branca – CEP: 05001-903 São Paulo – SP

²Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2160 - Campus Santa Mônica - Bloco 1º - Laprosolda - Uberlândia - MG - CEP: 38400-902

Resumo: Soldagens de chapas de aço galvanizado na indústria automobilística demandam procedimentos especiais, pois o zinco apresenta uma menor resistência à passagem de corrente. Com isso, torna-se necessário a utilização de maior nível de corrente para que o metal consiga aquecer até a sua fusão. Além disso, o zinco pode ainda causar problemas metalúrgicos, fragilizando a união, caso se dissolva na lente de solda ou evaporando-se (aprisionando-se na forma de bolhas). Para minimizar os efeitos prejudiciais do zinco, muitos profissionais desta área utilizam uma técnica tradicionalemnte denominada "burn-zinc" (queima do zinco). Porém, existem poucas informações e estudos disponíveis na literatura sobre quando e como utilizá-la. Este fato motivou a realização do presente estudo com a finalidade de discutir e avaliar a técnica de "burn-zinc", procurando entender melhor o fenômeno. Para tal, foi criada uma metodologia para determinação dos parâmetros ideais para cada combinação de chapa. Visulaização das soldagens através de filmagemem em alta velocidade com sincronização dos sinais elétricos foi empregada para confirmar os resultados. Uma vez definidos os parâmetros, soldagens foram realizadas com ou sem a aplicação da técnica sobre diferentes combinações de espessuras de chapa. Os procedimentos experimentais propostos mostraram ser eficientes para a verificação e parametrização da técnica "burn-zinc". Mas há evidências que a utilização da técnica nem sempre vai ocasionar redução no tempo total de operação.

Palavras-chave: Soldagem a Ponto por Resistência, aços galvanizados, Burn-Zinc,

1. INTRODUÇÃO

Chapas de aço galvanizado são bastante utilizadas na indústria automobilística por apresentarem relativamente altas resistências mecânicas, adequada estampabilidade e apropriada resistência à corrosão atmosférica, além de ter um custo mais baixo do que de outros materiais com resistência à degradação corrosiva, como os aços inoxidáveis. Neste ramo industrial, a união dessas chapas é feita principalmente pelo processo de soldagem a ponto por resistência. Porém, a camada de zinco presente no revestimento (galvanização) dificulta a operação de soldagem.

Os problemas do zinco em relação à soldabilidade dos aços galvanizados por solda a ponto por resistência elétrica podem ser caracterizados por sua atuação. A primeira característica se relaciona com a metalurgia, o zinco, por si só, pode causar problemas metalúrgicos no material quando ocorre a sua fusão e formação do ponto de solda. Como ele não é solúvel no aço, pode se disseminar e ocupar os interstícios nas frentes de solidificação (contornos de grãos primários), fragilizando a região e dando origem a trincas de solidificação. A segunda característica tem relação com a operacionalidade do processo. O zinco apresenta uma menor resistividade elétrica (0,592 x 10⁻⁸ Ω.m) do que a do aço (1,590 x 10⁻⁸ Ω.m) (MatWeb, 2007). Assim, a resistência elétrica na interface chapa-chapa é menor entre chapas galvanizadas do que entre chapas sem revestimento. Como conseqüência, é necessário utilizar correntes em maior nível para que se consiga aquecer a região de contato e a formação da lente de solda. Esse aumento da corrente pode ocasionar problemas durante o processo de soldagem, como, por exemplo, um aumento excessivo da indentação na superfície pelo ponto de solda ou mesmo a ocorrência de expulsão de material na região do ponto.

Além disto, o zinco da superfície da chapa pode difundir para o eletrodo de cobre, formando uma camada de latão na região de contato eletrodo-chapa. O latão, além de apresentar maior dureza do que o cobre apresenta uma resistência elétrica relativamente alta e, com isso, pode provocar um maior aquecimento na região eletrodo-chapa. Como o objetivo é aquecer a região de contato chapa-chapa, o aquecimento eletrodo-chapa é indesejável (provoca indentação e/ou expulsão). Outro inconveniente é que o latão formado tem também menor condutividade térmica, dificultando a refrigeração sobre a chapa e, da mesma forma, facilitando a indentação no ponto. Portanto, todos esses inconvenientes causados pela presença do zinco na camada de revestimento dificultam a soldabilidade do aço galvanizado.

O método mais comum no meio industrial para minimizar os problemas causados pela presença do zinco é através da técnica "burn-zinc". A técnica "queima do zinco" é um impulso adicionado no início do ciclo total de soldagem, no qual é aplicada uma corrente mais alta do que a usada na soldagem propriamente dita por um curto período de tempo. Em teoria, esse procedimento deve fazer com que o zinco seja fundido (ou até evaporado) e, devido à pressão aplicada, expulso da região onde se formará a lente de solda, deixando um contato somente entre aço sem revestimento. Neste momento, o zinco tende a ser expulso para uma região ao redor do local onde se formará o ponto de solda, solidificando-se posteriormente. É importante ressaltar que, entre esse impulso ("burn-zinc") e o ciclo da soldagem, é indicado deixar um curto espaço tempo sem passagem de corrente. Esta técnica faz com que a resistência à passagem de corrente aumente, pois o contato se dará diretamente entre aços sem revestimento e, por conseqüência, aquecerá mais e mais rápido a região entre as chapas, formando a lente de solda de forma mais adequada.

Entretanto, a literatura científica é muito carente sobre informações menos genéricas sobre esta técnica. Numa busca bibliográfica não se encontrou nem ao menos como se parametriza a operação. Desta forma, neste artigo se propõe a iniciar um campo de trabalho sobre a técnica "burn-zinc", propondo e avaliando uma metodologia para determinação dos parâmetros operacionais e a verificação da eficácia da técnica.

2. PROPOSIÇÃO E AVALIAÇÃO DE UM PROCEDIMENTO PARA DETERMINAÇÃO DOS PARÂMETROS PARA "BURN-ZINC"

Com intuito de determinar parâmetros adequados para o "burn-zinc" de uma dada junta a ser unida pelo processo de soldagem a ponto por resistência, foi proposto neste trabalho um procedimento padrão, através de um ensaio de simulação física. Procura-se, com este procedimento de ensaio, achar o envelope operacional para a aplicação da técnica numa dada condição. As etapas do procedimento são:

- Inicialmente, prepara-se corpos de prova com dimensões padronizadas (25 mm x 150 mm) nas diferentes espessuras a serem utilizadas (ou combinação entre chapas finas e espessas). Os corpos de prova devem ser fixados por uma das extremidades (deve-se inserir uma lâmina delgada de material não condutor entre as duas chapas na região de fixação para evitar o efeito da corrente derivativa, ou seja, o "efeito shunt");
- Aplica-se, então, na outra extremidade dos corpos de prova impulsos de "burn-zinc", variando-se o nível de
 corrente, da pressão aplicada pela pinça e do tempo de duração do impulso. Como o tempo utilizado é bastante
 curto, na maioria dos testes não ocorre a união entre as chapas, sendo possível separá-las manualmente e analisar a
 região de interesse;
- Caso ocorra a união entre as chapas em algum dos testes, fazer embutimento da amostra, cortá-la na região do
 ponto, atacar com um reagente próprio para o tipo de material e fazer a macrografia, para verificar se formou a
 lente de solda ou, caso não tenha formado, verificar se o zinco foi fundido ou deslocado para a região em torno do
 ponto;
- Separar as chapas e fazer uma varredura da camada de zinco em uma direção linear na região onde houve ação do burn-zinc, conforme Figura (1), com a utilização de um medidor digital de camadas Figura (2).

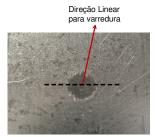


Figura 1. Direção linear para medição da camada de zinco

Figura 2. (a) Aparelho Mitutoyo DIGI-DERM Modelo 979-745 (b) Bloco padrão e laminas de plástico para calibração

Para avaliar a metodologia proposta e pesquisar o ponto de trabalho, visualizou-se as situações de soldagens de chapas galvanizadas nas combinações 0,7-0,7 mm e 2,0-2,5 mm, através de um equipamento de soldagem a ponto por resistência com corrente alternada em baixa frequência (transformador Soltronic HT75 2 MF, 75 kVA, 60 Hz), e sistema de controle tiristorizado marca Fase Saldatura, potência máxima 54 kVA. Para cada combinação de espessuras, foi planejado uma combinação 2² de níveis de corrente (3,0 e 7,0 kA) e de valor de regulagem de pressão (P1) no equipamento (2,0 e 6,0), completado com um ponto central formado pela combinação 5,0 kA e P1 = 3,5, como mostra a Tabela (1). Um tempo de 5 ciclos foi utilizado em todos os testes.

Tabela 1. Parâmetros dos testes de validação do Procedimento (tempo de "burn-zinc" de 5 ciclos)

Teste	Esp. Chapas [mm]	Corrente [kA]	P1(*) (Força aplicada [N])
BZ01	0,7 - 0,7	3,0	2,0 (736)
BZ02	0,7 - 0,7	3,0	6,0 (2511)
**P703	0.7 0.7	7.0	2.0 (736)

Teste	Esp. Chapas [mm]	Corrente [kA]	P1(*) (Força aplicada [N])
BZ01	0,7 - 0,7	3,0	2,0 (736)
BZ02	0,7 - 0,7	3,0	6,0 (2511)
**BZ03	0,7 - 0,7	7,0	2,0 (736)
***BZ04	0,7-0,7	7,0	6,0 (2511)
BZ09	0,7-0,7	5,0	3,5 (1403)
BZ05	2,0 – 2,5	3,0	2,0 (736)
BZ06	2,0 – 2,5	3,0	6,0 (2511)
BZ07	2,0 – 2,5	7,0	2,0 (736)
BZ08	2,0 – 2,5	7,0	6,0 (2511)
BZ10	2,0-2,5	5,0	3,5 (1403)

* - o valor P1 é adimensional, pois se trata do número de regulagem da Pressão no equipamento, mas o valor da forca entre eletrodos correspondente à regulagem é apresentado entre parênteses

** - descartada da análise, por parâmetros excessivos;

*** - não realizado por ser a combinação de parâmetro também excessiva para chapa de 0,7 mm

Dos oitos testes válidos nesta fase, três deles apresentaram união entre as chapas, sendo eles o BZ01, BZ07 e BZ09. Porém, nos testes BZ01 e BZ07 esta união estava fraca ("solda fria"), soltando-se com leve esforço no sentido de abrir as chapas (somente o teste BZ09 apresentou uma união forte, ocorrendo a formação da lente de solda). É importante destacar que não é objetivo da técnica "burn-zinc" fazer a união de chapas e sim a queima do zinco como forma preparatória para a soldagem propriamente dita. Estas características foram confirmadas refazendo-se os três testes. Nos demais testes não ocorreram união entre as chapas, sendo possível a separação das mesmas para análise da região de interesse. Assim, as medições das espessuras da camada de zinco foram feitas utilizando-se o medidor digital de camada.

Nota-se na Figura (3), referente ao teste BZ01, que na região central onde o ponto se formaria, o zinco foi removido em parte, mas não completamente, já que a espessura da camada do zinco na chapa original era de 19 µm e após a passagem de corrente foi verificado que a espessura da camada caiu para uma faixa de 8 a 10 µm. Já a Figura (4), ilustrando o teste BZ02, mostra uma situação em que não ocorreu a queima do zinco; observa-se que mesmo tendo formado uma região do contato dos eletrodos (região de formação do ponto), a camada de zinco não foi removida (houve apenas uma pequena variação no valor da espessura). A Figura (5) apresenta o resultado do teste BZ03. Os parâmetros foram tão excessivos que a chapa apresentou uma grande região com fuligem, além de que na região do ponto de solda ficou aderido o cobre do eletrodo. Como os parâmetros foram excessivos para as chapas finas, preferiuse nem realizar o teste BZ04. Com isso, pode concluir que para as quatro combinações de parâmetros utilizados em chapas finas, não se conseguiu a queima completa do zinco ou esta foi excessiva, não sendo estes os parâmetros adequados para a técnica de "burn-zinc" neste caso.

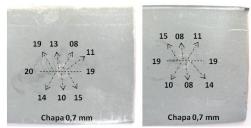


Figura 3. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ01

Figura 4. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ02

Figura 5. Parâmetros excessivos para a espessura da chapa (0,7 mm), teste BZ03

Observa-se agora na Figura (6), referente ao teste BZ05, que na chapa de 2,5 mm não foi retirada qualquer camada de zinco. Pelo contrário, a camada média da chapa original era de 13 µm e teve regiões que apresentaram uma camada com 21 e, até, com 23 µm de espessura de zinco. Por outro lado, na outra chapa (2,0 mm) pode ser observado que na região central onde o ponto se formaria o zinco foi retirado, ou seja, passou de uma espessura de 12 para 4 a 3 µm. Pode-se concluir, então, que o zinco de uma chapa passou para a outra, porém ainda permaneceu na região onde o ponto seria formado, o que não caracteriza o sucesso da técnica de "burn-zinc". A Figura (7) mostra o comportamento do teste BZ06. Percebe-se que a espessura da camada de zinco manteve-se constante em toda a região da chapa, não ocorrendo nenhuma marcação de onde os eletrodos tocavam a chapa por onde a corrente passou.

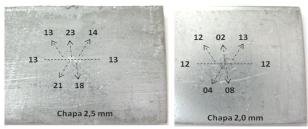


Figura 6. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ05

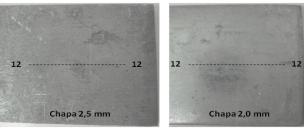


Figura 7. Não houve formação de ponto nem fusão de zinco, teste BZ06

A Figura (8) apresenta a análise do teste BZ07, onde nota-se que, na região por onde se passou a corrente, o zinco foi retirado, pois na região central a espessura do zinco caiu para uma faixa entre 1 e 4 μ m, sendo que a espessura média na chapa de 2,5 mm era de 11 μ m e o da chapa de 2,0 mm era de 12 μ m. É importante ressaltar, porém, que houve uma região onde provavelmente houve fuga da corrente (corrente derivativa – região onde nota-se a retirada de zinco, porém afastada do ponto onde se formaria a lente de solda), caracterizada pela retirada do zinco da chapa de 2,0 mm (faixa de 1 a 5 μ m), que foi deslocada para a chapa de 2,5 mm, onde a camada aumentou de 11 μ m para uma faixa de 20 a 22 μ m. Já a Figura (9) ilustra o teste BZ08. Neste caso, observa-se que ocorreu o "burn-zinc", sendo que a espessura média da camada de zinco das chapas era de 12 μ m e na região central do ponto essa espessura caiu para uma faixa de 1 a 5 μ m, o que caracteriza a queima do zinco.

Figura 8. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ07

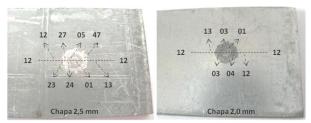


Figura 9. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ08

Por último, é apresentada a análise das superfícies dos últimos dois testes, com parâmetros intermediários aos dos testes anteriores (5 kA e P1 = 3,5), aplicados na combinação de chapas finas (0,7 com 0,7 mm) e chapas espessas (2,0 com 2,5 mm). Como já mencionado, no teste BZ09 os parâmetros utilizados foram suficientes para a formação de lente de solda na chapa fina (ocorrendo a soldagem entre as chapas); com isso, não foi possível a separação das mesmas para medição da camada de zinco. O teste BZ10, apresentado na Figura (10), por outro lado, se caracteriza pela ocorrência do "burn-zinc", ou seja, o zinco na região central do ponto foi retirado, uma vez que no centro do ponto a espessura caiu para 1 a 3 µm (contra um valor médio de 12 µm do revestimento da chapa em questão). É interessante observar que, na região ao redor do ponto, a camada de zinco aumentou para até 32 µm (chapas de 2,5 mm), mostrando que na técnica "burn-zinc" boa parte do material do revestimento é retirado para a região ao redor do ponto de solda, deixando a região central com contato diretamente entre aço sem revestimento.

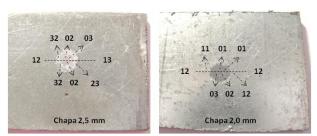


Figura 10. Espessuras da camada de zinco [µm] na região do ponto de solda, teste BZ10

Para os três testes onde ocorreram a união entre as chapas (BZ01, BZ07 e BZ09), foram então embutidos os corpos de prova e obtida as macrografias. A Figura (11) apresenta essa macrografia para o teste BZ01 (entre chapas finas), por onde se verifica que não existe nenhuma evidência de que tenha ocorrido a queima total do zinco na região onde o ponto se formaria (apesar da pouca ampliação conseguida na macrografia). Mas observa-se que na lateral esquerda de onde o ponto se formaria parece ter ocorrido uma pequena fusão de zinco, o que poderia ser a razão da "união fraca" entre as chapas, ou seja, apesar de não ter ocorrido a queima total do zinco no centro do ponto (evidenciado pela medição da camada de zinco realizada anteriormente e mostrada na Figura (3)), a queima parcial do zinco pode ter sido suficiente para "colar" as chapas finas.

A Figura (12) mostra o teste BZ07 entre chapas espessas. É importante ressaltar que o ataque com Nital 10% reagiu diferentemente nas duas chapas. Nota-se que na chapa mais espessa (2,5 mm) o Nital atacou bastante, revelando uma região bem mais escura quando comparada ao ataque na chapa de 2,0 mm, onde o ataque foi bastante fraco. Porém, é possível observar que a lente de solda não foi formada e que existe a presença de pequenos pontos (em forma de esferas) que podem ser o zinco fundido da camada do revestimento, que no mesmo caso anterior pode ter sido a causa da união fraca entre as chapas, ou seja, o zinco fundiu e "colou" as duas chapas, porém com pouca resistência. Já a Figura (13) (teste BZ09) mostra a formação da lente de solda, sendo que os parâmetros utilizados no teste foram suficientes para se unir as chapas finas; neste caso a união entre as chapas foi forte (ocorreu a soldagem) e não fraca como nos dois testes anteriores.

Figura 11. Macrografia do teste BZ01 (ataque Nital 10%)

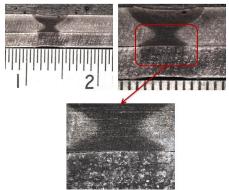


Figura 12. Macrografia do teste BZ07 (ataque Nital 10%)

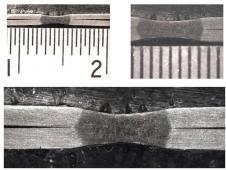


Figura 13. Teste BZ09, formação da lente de solda para efeito de comparação (Nital 10%)

Por último, só para efeito de comparação, foi realizado mais um teste entre as chapas espessas, com os mesmos parâmetros do teste BZ07, porém com um tempo maior (15 ciclos). Novamente foi embutido o corpo de prova, cortado, atacado e realizada a macrografia. Observa-se na Figura (14) que, mesmo o ataque atuando de maneira diferente nas duas chapas, formou-se o ponto de solda e na lateral esquerda do ponto de solda aparece um metal fundido (provavelmente zinco que foi expulso para a região em torno do ponto).

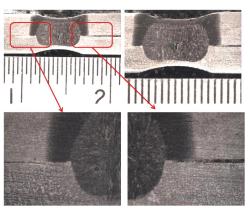


Figura 14. Macrografia da lente de solda para união de chapa de 2,5 mm com 2,0 mm, utilizando parâmetros reais de soldagem, para efeito de comparação (teste BZ07)

Observa-se na macrografia da Figura (12) a presença de um grande poro próximo à superfície da chapa superior. Nota-se, também, que na Figura (14) existe um vazio (em forma de T) bem na região central da lente de solda e alguns pequenos poros na região lateral da lente formada. Esse comportamento pode ser explicado devido ao zinco que foi

evaporado durante a operação e ficou aprisionado no interior do material ou ainda na reação química durante o ataque do Nital para a revelação da macrografia; o zinco poderia ter sido atacado fortemente sendo retirado da região, permanecendo somente o vazio. Porém, não é o objetivo do presente trabalho analisar estas descontinuidades ou defeitos. Assim, utilizando esse procedimento, tornou-se possível identificar o envelope operacional de parâmetros de "burn-zinc" (tempo, corrente e pressão) que realmente conseguem retirar a camada para cada tipo de combinação de material.

Para visualizar e confirmar os resultados acima, procurou-se filmar o ponto de união das chapas sob impulsos para "burn-zinc", utilizando-se uma câmera de alta velocidade com imagens sincronizadas com sinais de tensão e corrente. Para tal os eletrodos foram truncados (a ponta foi usinada ao meio, conforme detalhado em Vilarinho et al, 2006) e o ponto de solda realizado na aresta da extremidade das chapas, para que fosse possível a sua visualização. Com a filmagem, a análise é mais completa, pois se pode ver quadro a quadro a formação do fenômeno e ainda fazer uma comparação com a corrente e a tensão. Pela Figura (15), referente a uma condição de corrente baixa (3kA) e regulagem de pressão alta (P1 = 6,0), verifica-se que não ocorreu a expulsão e nem evaporação de zinco, sendo os parâmetros impróprios para a esta combinação de chapas espessas (2,0 com 2,5 mm). Observa-se no oscilograma que foi utilizado um tempo de cinco ciclos, porém a corrente não teve um valor suficiente para que ocorresse o "burn-zinc". É também importante ficar atento ao fato da tensão praticamente não se alterar durante todo o tempo de passagem de corrente, sugerindo não haver mudança na resistência de contato.

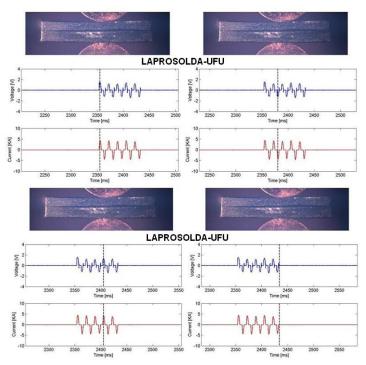


Figura 15. Quadros seqüenciais ilustrando o comportamento da interface chapa-chapa durante a aplicação da técnica "burn-zinc" por 5 ciclos, mas com parâmetros (corrente e/ou pressão) insuficientes para se obter a queima do revestimento (teste BZ06, realizado com uma corrente de 3 kA com uma regulagem de pressão P1 = 6,0 em chapas 2,0-2,5 mm)

A Figura (16), referente a uma combinação de corrente e regulagem intermediárias (5 kA e P1 = 3,5) para as chapas 2,0-2,5 mm, mostra, por outro lado, a ocorrência com sucesso da técnica de "burn-zinc". Nota-se no oscilograma que foram utilizados também cinco ciclos. Já nos primeiros ciclos ocorre um aquecimento na região de contato chapachapa. Ao passar do tempo, o material da chapa na região entre os eletrodos aquece bastante, sofrendo alterações metalúrgicas. É interessante observar que depois de um curto tempo após o final da passagem de corrente, surge uma fumaça esbranquiçada saindo do interior da região de contato chapa-chapa, caracterizando a evaporação do zinco presente na região. Percebe-se também que a tensão aumenta até o terceiro ciclo, sugerindo que a resistência de contato está aumentando coerentemente. Importante salientar também que para todos os ensaios foram utilizados eletrodos esféricos de Cobre Zircônio, FE16Z06, procedência Nippert – USA, classificados, segundo RWMA (1989), como sendo do grupo A, classe 1.

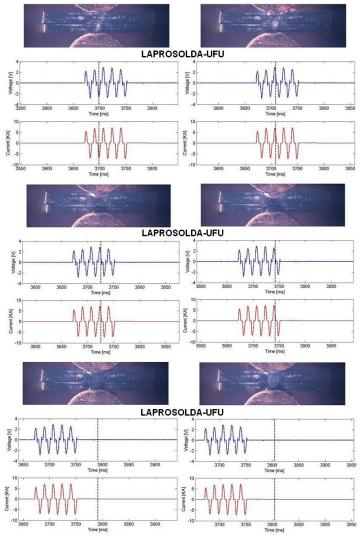


Figura 16. Sequência ilustrando o comportamento da interface chapa-chapa durante a aplicação do "burn-zinc" por 5 ciclos, mas com parâmetros (corrente e pressão) adequados para se obter a queima do revestimento (teste BZ10, realizado com uma corrente de 5 kA com uma regulagem de pressão P1 = 3,5 em chapas 2,0-2,5 mm)

3. AVALIAÇÃO DA EFICIÊNCIA DA TÉCNICA DE "BURN-ZINC"

Evidências de ensaios exploratórios (Nascimento, 2008), não apresentados neste trabalho, haviam demonstrado que nem para todas as combinações de chapas a soldar, espessura e tipo de galvanização, a técnica "burn-zinc" é vantajosa ou necessária. Houve casos em que, se aplicando a técnica, o tempo para se conseguir um ponto com a mesma dimensão é maior do que quando não se aplica a técnica, como no caso da combinação de chapa espessa (2,0-2,5 mm). Assim, para a verificação da eficiência real do uso do "burn-zinc", foram realizados outros testes com o objetivo de se comparar uma solda completa (usando-se parâmetros adequados para a soldagem em si), com e sem o uso da técnica de "burn-zinc, a partir de uma parametrização. Como havia sido verificado nos testes exploratórios que para chapas mais espessas o tempo necessário para se conseguir um ponto adequado era grande quando utilizando a queima do zinco, optou-se então, nesta fase por utilizar uma chapa com espessura intermediária (1,2-1,2 mm). Primeiramente, foram realizadas soldagens sem queima de zinco para efeito de comparação. Os parâmetros utilizados estão apresentados na Tab. (2), destacando-se de que o valor de regulagem pressão foi de 4,0 no equipamento (equivalente a 1619 N).

Nota-se que os melhores parâmetros para soldar as chapas de 1,2 mm, sem a utilização da técnica do "burn-zinc", foram de 10 ciclos de soldagem com uma corrente de 5 kA, conseguindo um ponto com tamanho de 5,6 mm. Quando se utilizou oito ciclos, ou o ponto foi parcialmente formado ou ocorreu expulsão, não sendo os parâmetros idéias para a combinação das chapas. Definidos os parâmetros idéias para se soldar as chapas de 1,2 mm sem utilização da técnica da queima do zinco, foram, então, realizados testes para se encontrar os parâmetros otimizados para a realização da técnica de "burn-zinc" para esta combinação de chapas (1,2 x 1,2 mm).

Inicialmente variou-se as regulagens da corrente e pressão, mantendo-se o tempo de aplicação do burn-zinc em 5 ciclos, como mostra a Tab. (3). Observa-se que utilizando-se cinco ciclos com uma corrente de 4 kA, nos três níveis de regulagem de pressão ocorreu o "burn-zinc". Já para as correntes de 5 kA e de 6 kA, os parâmetros foram excessivos e

ocorreu a colagem das chapas.

Tabela 2. Parâmetros de soldagem para os testes sem aplicação do ciclo de burn-zinc em chapas com espessuras de 1.2 e 1.2 mm

	Tamanho do ponto (mm)		
4	0		
5	0		
6	0		
4	0		
5	3,5 (parcial)		
6	5,7 (expulsão)		
4	0		
5	5,6		
6	5,8 (expulsão)		
	5 6 4 5 6 4 5		

Tamanho mínimo de ponto para aceitabilidade = 4,38mm

Tabela 3. Parâmetros de teste para realizar o "burn-zinc" com 5 ciclos (chapas de 1,2 e 1,2 mm)

Teste	Corrente [kA]	P1-força [N]	Burn- Zinc	Observação
BZ5-01-2	4	2,0 (736)	OK	Boa
BZ5-02-2	4	3,0 (1197)	OK	Boa
BZ5-03-2	4	4,0 (1619)	OK	Boa
BZ5-04-2	5	2,0 (736)	Uniu	_
BZ5-05-2	5	3,0 (1197)	Uniu	_
BZ5-06-2	5	4,0 (1619)	Uniu	-
BZ5-07-2	6	2,0 (736)	Uniu	-
BZ5-08-2	6	3,0 (1197)	Uniu	_
BZ5-09-2	6	4,0 (1619)	Uniu	_

Porém, para tentar otimizar o procedimento do ponto de vista operacional, optou-se por diminuir o tempo para três ciclos e repetir as condições de teste. Os resultados estão apresentados na Tab. (4). Nota-se que agora para uma corrente de 4 kA, o "burn-zinc" ocorreu apenas parcialmente, ou seja, a camada de zinco não foi completamente retirada. Com a corrente de 5 kA na condição de pressão mais baixa (P1 = 2,0) ocorreu a colagem das chapas. Com uma pressão intermediária (P1 = 3,0), ocorreu somente a queima parcial do zinco. Já com a pressão mais alta (P1 = 5,0) o zinco foi queimado e retirado da superfície. Para o último nível de corrente usada (6 kA), na pressão mais baixa (P1 = 2,0) ocorreu a união, o mesmo acontecendo quando se utilizou uma regulagem de pressão de 3,0. Por fim, na regulagem de pressão de 4,0 foi onde se notou a melhor condição para a realização do "burn-zinc", sendo os parâmetros ideais para essa combinação de chapas.

Assim, para efeito de comparação com a soldagem sem queima de zinco, foi realizada mais uma série de testes, fixando-se a condição de "burn-zinc" ideal para combinação de chapas, ou seja, tempo de três ciclos com a corrente de 6 kA e uma regulagem de pressão de 4,0. O tempo de corrente, ou seja, o tempo regulado para passagem de corrente durante o ciclo de soldagem após os três ciclos do "burn-zinc" foi variado em 10, 8 e 5 ciclos. Variou-se também o tempo entre os ciclos do "burn-zinc" e os ciclos de soldagem, chamado de tempo de espera. Foram utilizados 3, 5 e 10 ciclos entre eles. A Tab. (5) resume os parâmetros dessa fase de testes. Observa-se que os parâmetros ideais (em destaque na tabela), para a combinação de chapas ensaiadas, foram de oito ciclos e uma espera de três ciclos entre o "burn-zinc" e a soldagem. Quando comparado com a soldagem sem a técnica da queima do zinco, o tempo de corrente caiu para 8 ciclos em relação aos 10 ciclos necessários para ocorrer a soldagem. Porém no total foram gastos 14 ciclos para se completar todo o processo de soldagem. Esses 4 ciclos a mais necessários para a utilização da técnica do "burn-zinc" talvez possam ser justificáveis por um possível ganho de qualidade no final da soldagem, podendo diminuir o número de pontos refugados.

Para uma melhor visualização da técnica de "burn-zinc", foi filmado o procedimento de soldagem, primeiramente somente com a solda sem a queima do zinco utilizando os dez ciclos, 5 kA e a regulagem de pressão de 4,0 (Figura (17)) e posteriormente a filmagem da soldagem com o "burn-zinc" utilizando os parâmetros idéias encontrados (Figura

(18)). Observa-se que logo após os 3 ciclos de "burn-zinc" aparece uma fumaça esbranquiçada saindo da região onde se formará o ponto de solda, caracterizando a evaporação do zinco presente na região de formação do ponto de solda, confirmando a eficiência da técnica.

Tabela 4. Parâmetros de teste para realizar o "burn-zinc" com 3 ciclos (chapas de 1,2 e 1,2 mm)

Teste	Corrente [kA]	P1-força [N]	Burn-Zinc	Observação
BZ3-01-2	4	2,0	OK	Parcial
BZ3-02-2	4	3,0	OK	Parcial
BZ3-03-2	4	4,0	OK	Parcial
BZ3-04-2	5	2,0	Uniu	Expulsão
BZ3-05-2	5	3,0	OK	Parcial
BZ3-06-2	5	4,0	OK	Boa
BZ3-07-2	6	2,0	Uniu	Expulsão
BZ3-08-2	6	3,0	Uniu	Expulsão
BZ5-09-2	6	4,0	OK	Ideal

Tabela 5. Parâmetros de soldagem para os testes com aplicação do ciclo de burn-zinc em chapas com espessuras de 1,2 e 1,2 mm

Teste	Corrente [kA]	Pressão	Corrente [kA]	Pressão	Espera entre impulsos	Tam. Ponto
	Burn-Zinc 3 ciclos		Solda 10 ciclos			
BZ310-01	6	4	5	4	3	5,78
BZ310-02	6	4	5	4	5	4,40
BZ310-03	6	4	5	4	10	4,55
	Burn-Zinc 3 ciclos		Solda 8 ciclos			
BZ38-1	6	4	5	4	3	5,45
BZ38-2	6	4	5	4	5	4,10
BZ38-3	6	4	5	4	10	0
	Burn-Zinc 3 ciclos		Solda 5 ciclos			
BZ35-01	6	4	5	4	3	0
BZ35-02	6	4	5	4	5	0
BZ35-03	6	4	5	4	10	0

^{*} Tamanho mínimo de ponto para aceitabilidade = 4,38mm

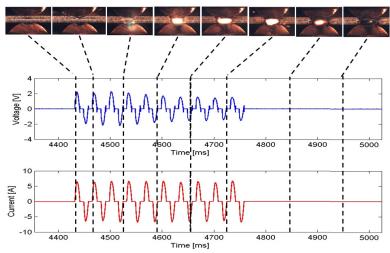


Figura 17. Filmagem do processo de soldagem utilizando dez ciclos

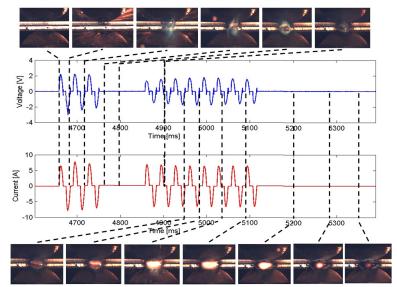


Figura 18. Filmagem do processo de soldagem com a técnica de "burn-zinc"

4. Conclusões

A utilização da técnica "burn-zinc" pode ser uma importante ferramenta nas soldagens de chapas com revestimento de zinco (galvanizada). Entretanto, a aplicação da técnica deve ser feita com critério. Primeiro, tem de se verificar o envelope de parâmetros que garanta o efeito real de queima do zinco para cada condição de soldagem (tipo e espessura de chapa). Em seguida, tem de se verificar se a eficiência da técnica se confirma para esta dada condição (o grau da eficácia do "burn-zinc" vai depender de várias variáveis presentes no processo, principalmente a espessura e tipo de galvanização das chapas a serem soldadas e do tempo entre o impulso para o "burn-zinc" e a soldagem propriamente dita). Os procedimentos experimentais para essas verificações, sugeridos pelo grupo Laprosolda da Universidade Federal de Uberlândia e descritos acima, mostraram ser eficientes para a verificação e parametrização da técnica "burn-zinc".

5. AGRADECIMENTOS

Os autores gostariam de agradecer aos professores do Laprosolda, Prof. Louriel Vilarinho e Prof. Valtair Antônio Ferraresi, pelas sugestões e contribuições durante a realização do trabalho. Também agradecer à Fapemig, ao CNPq e ao IFM, pela infra-estrutura laboratorial, e à CAPES (bolsa de estudo de um dos autores).

6. REFERÊNCIAS

AWS/SAE D8.9M. Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials. International Standard Book Number: 0-87171-672-0. 2002. American Welding Society. 550 N. W. LeJeune Road, Miami, Florida 33126. Printed in the U.S.A. 2002.

MatWeb – Material Property Data http://www.matweb.com. Acesso em: 18 Jul. 2007.

NASCIMENTO, V.C. Seleção de Parâmetros de Soldagem a Ponto por Resistência, Baseado na Medição da Resistência Elétrica entre Chapas. Tese de Mestrado, Universidade Federal de Uberlândia, Uberlândia. 2008. 130f.

RWMA – Resistance Welding Manual, Resistance Welder Manufacturing Association. U.S.A., 4th Ed., Nov. 1989. 443 p.

VILARINHO, L. O., VARGAS, J. E. A., WOLFF, M. A., ALFARO, S. C. A., 2006, "Study of Resistance Spot Welding Process by Using Synchronized High Speed Filming", Soldagem & Inspeção, Vol. 11, N° 3, Jul/Set. 2006.